
SUS Compiler

Goals

•Retain low-level control over generated hardware
• Individual Statements should map onto hardware as directly as possible

•But more compact than VHDL/(System) Verilog
•Compile-Time Verification
•No Guessing, no trusting the compiler to do The Right Thing™
•Common modifications should be easy
•Reduce “State” as much as possible.

• Can yell at programmer more often

Why not HLS?

•Hardware != Imperative
• Fiddly

• Rely on compiler optimization for decent hardware
• Why is my pipeline only having 50% throughput?

•Cannot express exact timing requirements
• Intel & Xilinx proprietary monopolies.

From speaking with people in industry

•Clock Domain Crossings are VERY difficult
•Proper timing constraints also difficult

Easy Pipelining
module multiply_add :
 int a,
 int b,
 int c
 -> int result
{
 int tmp = a * b;
 @
 result = tmp + c;
}

module multiply_add(
 input clk,
 input[31:0] a,
 input[31:0] b,
 input[31:0] c,
 output[31:0] result_D
) {
 reg[31:0] tmp_D;
 reg[31:0] c_D;

 always @(posedge clk) begin
 tmp_D <= a * b;
 c_D <= c;
 end
 assign result_D = tmp_D + c_D;
}

Stream Processors
module blur2(
 input clk,
 input[31:0] data,
 output[31:0] blurred
) {
 reg[31:0] prev;

 always @(posedge clk) begin
 prev <= data;
 end
 assign blurred = prev + data / 2;
 // when is blurred valid?
}

// Explicitly state when valid
timeline (v->/) .. (v->v)*
module blur2 :
 int data -> int blurred
{
 state int prev = data;
 #
 loop {
 blurred = prev + data / 2;
 prev = data;
 #
 }
}

Pipe and Time combination
module multiply_aggregate(
 input clk,
 input start,
 input done,
 input[31:0] data,
 output reg[31:0] sum,
 output sumValid
) {
 always @(posedge clk) begin
 if(start) {
 sum <= 0;
 } else if(done) {

 }
 prev <= data;
 end
 assign blurred = prev + data / 2;
}

Rhythms for Clock Domain Crossings

True Stateful modules

• FIFOs
•Memory
•Control Circuits

Neat safety features

•Automate FIFO sizing
•Automate reset duration sizing
• Integer min-max sizing instead of bit-widths
•Rhythms for Clock Domain Crossings
•Generated hardware can make extensive use of “Don’t care”

• Aids in Simulation

Open Questions

• Safety for stream ordering?
•CPU and Cache Safety by state invalidation?
•How extensive should timeline protocol specs be?
•Dealing with constants?
• “Compute Modes”?
•Generating timing constraints?
•Generic vs Concrete conflict
•What about stream modules that require unpredictable input stalls?
•Resource saving on long register chains?

