SUS Compiler

Goals

* Retain low-level control over generated hardware
* Individual Statements should map onto hardware as directly as possible

* But more compact than VHDL/(System) Verilog

* Compile-Time Verification

* No Guessing, no trusting the compiler to do The Right Thing™
* Common modifications should be easy

* Reduce “State” as much as possible.
* Can yell at programmer more often

Why not HLS?

* Hardware = Imperative
* Fiddly

* Rely on compiler optimization for decent hardware
* Why is my pipeline only having 50% throughput?

* Cannot express exact timing requirements
* Intel & Xilinx proprietary monopolies.

@ reddit

‘. Posted by u/lbishek 13 days ago

13 What bugs consume most of your time?

¥

I know that there is quite a bit of overlap, but just to get some rough idea..

316 votes

37

97

7

28

38

45

RTL Compilation errors (wrong syntax, datatypes, missing conversions etc.)
RTL Cycle-wise timing errors (off-by-one errors, control signals not arriving at proper ti...
IP integration (misunderstood documentation, bugs in IP itself)

Architectural errors - design is conceptually wrong and could have never worked
Testbench errors (compilation errors, misunderstood DUT functionality)

Other

Voting closed 10 days ago

B 24 Comments Award #® Share Unsave

From speaking with people in industry

* Clock Domain Crossings are VERY difficult
* Proper timing constraints also difficult

Easy Pipelining

module multiply add(
input clk,
input[31:0] a,
input[31:0] b,
input[31:0] c,
output[31:0] result D

) {
reg[31:0] tmp D;
reg[31:0] c D;

always @(posedge clk) begin
tmp D <= a * b;
c D <= c¢;

end

assign result D = tmp D + ¢ _D;

int a,
int b,
int ¢
-> int result

int tmp = a * b;
@

result = tmp + c;

module multiply add :

-a

X ftmp— —

—result—

Stream Processors

module blur2(
input clk,
input[31:0] data,
output[31:0] blurred

) o
reg[31:0] prev;

always @(posedge clk) begin
prev <= data;
end

assign blurred = prev + data / 2;

timeline (v->/) .. (v->v)*
module blur2 :
int data -> int blurred

{
state int = data;
#
loop {
blurred = + data / 2;
= data;
#
}
}

Pipe and Time combination

module multiply aggregate(
input clk,
input start,
input done,
input[31:0] data,
output reg[31:0] sum,
output sumValid
) o
always @(posedge clk) begin
if(start) {
sum <= 0;
} else if(done) {

}

prev <= data;
end
assign blurred = prev + data / 2;

Rhythms for Clock Domain Crossings

True Stateful modules

* FIFOs
* Memory
e Control Circuits

Neat safety features

* Automate FIFO sizing

* Automate reset duration sizing

* Integer min-max sizing instead of bit-widths
* Rhythms for Clock Domain Crossings

* Generated hardware can make extensive use of “Don’t care”
* Aids in Simulation

Open Questions

e Safety for stream ordering?

* CPU and Cache Safety by state invalidation?

* How extensive should timeline protocol specs be?

* Dealing with constants?

* “Compute Modes”?

* Generating timing constraints?

* Generic vs Concrete conflict

* What about stream modules that require unpredictable input stalls?
* Resource saving on long register chains?

