
Design of the SUS Language

Lennart Van Hirtum
PC2 - Paderborn University

Prof. Christian Plessl
PC2 - Paderborn University



Outline

● Motivation & where others fall short

● SUS Design Process

● Example SUS Code

● Typing

● Latency Counting

● Implementation & Future

● Live Demo



Motivation



What I want out of an HDL

- Full control over generated hardware

- All HDL code must be Synthesizeable
- Keep your simulations in software like CocoTB!

- Language must have notion of Cycle-wise timing

- First-class Pipelining support

- First-class IDE support



Where do other languages fall short?

- (System)Verilog, VHDL?



Where do other languages fall short?

- (System)Verilog, VHDL?
- Very verbose
- No defence against incorrect hardware





Where do other languages fall short?

- (System)Verilog, VHDL?
- Very verbose
- No defence against incorrect hardware



Where do other languages fall short?

- (System)Verilog, VHDL?
- Very verbose
- No defence against incorrect hardware

- Embedded Generation Languages (Chisel in Scala, SystemC in C++)?



Where do other languages fall short?

- (System)Verilog, VHDL?
- Very verbose
- No defence against incorrect hardware

- Embedded Generation Languages (Chisel in Scala, SystemC in C++)?
- Suffer under parent language Syntax
- Little defence against incorrect hardware
- No hardware-specific IDE support







Where do other languages fall short?

- (System)Verilog, VHDL?
- Very verbose
- No defence against incorrect hardware

- Embedded Generation Languages (Chisel in Scala, SystemC in C++)?
- Suffer under parent language Syntax
- Little defence against incorrect hardware
- No hardware-specific IDE support



Where do other languages fall short?

- (System)Verilog, VHDL?
- Very verbose
- No defence against incorrect hardware

- Embedded Generation Languages (Chisel in Scala, SystemC in C++)?
- Suffer under parent language Syntax
- Little defence against incorrect hardware
- No hardware-specific IDE support

- HLS?



Data movement

Computation

Timing Details

HLS: We can do it all!



C++



C++

Recursion

IO
memory allocation

RAII

pointers



C++HLS

“ Single-source 
host and kernel ”

“ Turn software devs 
into hardware devs ”

“ It improves portability ”

“ The compiler will 
figure it out ”



Where do other languages fall short?

- (System)Verilog, VHDL?
- Very verbose
- No defence against incorrect hardware

- Embedded Generation Languages (Chisel in Scala, SystemC in C++)?
- Suffer under parent language Syntax
- Little defence against incorrect hardware
- No hardware-specific IDE support

- HLS?



Where do other languages fall short?

- (System)Verilog, VHDL?
- Very verbose
- No defence against incorrect hardware

- Embedded Generation Languages (Chisel in Scala, SystemC in C++)?
- Suffer under parent language Syntax
- Little defence against incorrect hardware
- No hardware-specific IDE support

- HLS?
- Lose control over generated hardware (Are you sure it’s optimal?)
- (Corporate HLS) is not portable at all, and stifles lower-level access for competitors



Where do other languages fall short?

- (System)Verilog, VHDL?
- Very verbose
- No defence against incorrect hardware

- Embedded Generation Languages (Chisel in Scala, SystemC in C++)?
- Suffer under parent language Syntax
- Little defence against incorrect hardware
- No hardware-specific IDE support

- HLS?
- Lose control over generated hardware (Are you sure it’s optimal?)
- (Corporate HLS) is not portable at all, and stifles lower-level access for competitors

- Other NeoHDLs (Filament & Spade)?



Where do other languages fall short?

- (System)Verilog, VHDL?
- Very verbose
- No defence against incorrect hardware

- Embedded Generation Languages (Chisel in Scala, SystemC in C++)?
- Suffer under parent language Syntax
- Little defence against incorrect hardware
- No hardware-specific IDE support

- HLS?
- Lose control over generated hardware (Are you sure it’s optimal?)
- (Corporate HLS) is not portable at all, and stifles lower-level access for competitors

- Other NeoHDLs (Filament & Spade)?
- Focus on Correctness
- Focus on Timing





Hot Takes



Hot Takes

There are no reusable hardware components

Software prototyping for hardware doesn’t exist
(unless it’s named Verilator)

HLS is not the solution



So… Abstraction Bad? 

Of course not.

Abstraction Good!



Good Abstractions

Represent the programmer’s intent

Replace error-prone constructs

Don’t get in the way

⇒ Reduce Designer mental load

Bad Abstractions

Trade in design freedom
for “abstraction”

⇒ Contort the Designer into the 
vendor’s paradigm



SUS Design Process



Control Feedback Pragmatism



Control

If I can draw it, I want to be 
able to write it

⇒ All synchronous hardware 
representable



Feedback

LSP
- Errors & Info
- Navigation
- Code Suggestions

Instant In-Editor Feedback
- No separate Compile Step



Pragmatism

Let hardware be hardware

Simple things should be simple

Infer where possible



Pragmatism

Let hardware be hardware

Simple things should be simple

Infer where possible beneficial



Examples



XOR gate



Generative Code



FizzBuzz



Generative FizzBuzz



Dependent Types!



Typing



Dependent Types are a nightmare to work with



What is the SUS-lution?

- Want simple type checking → use dynamic typing?

- Want to use type info to hint user at template level → traits & types?

- But do we really need to statically prove all parametrizations of a module are “correct”?
- Or can we simply check each instance?

- Does this info need to care about array sizes?

⇒ Two typing levels!



Abstract Type

int[]

Typecheck at Flattening time

Only type names and structure

LSP Info & Template checking

Concrete Type

int[256]

Typecheck at Instantiation time

Type names and concrete values

Actually define wires



Latency Counting



Registers



State registers



Latency Registers



Port Latencies



Latency Annotations



Multiple Interfaces



Latency Cuts



Latency offsets



Architecture & Future



Architecture



Short term milestones
“Build anything in SUS”

● Arbitrary Single-Clock hardware description
○ Migrate from custom parser to Tree-Sitter
○ Multi-interface modules
○ Integer Bounds
○ Templates & Generative Parameters

● Standard Library
○ Extern (Verilog) Modules
○ Implement FIFO, Memory Block, Skid Buffer, Distributor, Merger, etc



Vague long term milestones
“SUS stands for Safety”

● CIRCT Compile Target
○ Enables use of btor2 LTL for verification

● Advanced Bounds
○ Use Bounds system as an alternative to Sum Types
○ Protect FIFOs, skid buffers, etc in the STL using LTL verification

● Arbitrary Multi-Clock hardware description
○ STL Clock Domain Crossing modules
○ Multi-Clock STL modules

● Inference of generative parameters
● Custom Types



LSP Demo



github.com/pc2/sus-compiler



● Are “traits” reasonable for hardware?
● C-style types vs Rust-style types?
● Type inference?
● Additional Constructs: first, only, chain? 
● Backend?
● Abstraction for valid/reset protocols?
● Built-in Verification?
● Bounded integers vs bitwidths?
● Integer representations? (2s cpl, vs 1s cpl vs one-hot vs registered)
● Built-in Floats?
● Sum Types?
● Latency offsets within structs?
● What becomes of SUS after I graduate?


