
Physics3D

Lennart Van Hirtum

February 2021

1

1 Shapes

1.1 Fundamental formulae

Volume

V =

˚
V

1 dxdydz (1)

Center of mass

~M =

˚
V

(
x
y
z

)
dxdydz

V
(2)

Moment of inertia

Î =

˚
V

[
(

x
y
z

)
]2
×
dxdydz =

˚
V

(
−y2−z2 xy xz

xy −x2−z2 yz

xz yz −x2−y2

)
dxdydz (3)

1.2 Shape Classes

Figure 1: Shape classes, left to right: Box, Wedge, Corner, Cylinder, Sphere

Shape classes are a way of solving two problems at once:

1. Not all shapes are representable by polyhedra (ex, wheels, balls, toruses).

2. A Polyhedron uses a lot of memory - especially when trying to approximate
these non-representable shapes - much of which can be saved if multiple
parts could reuse the same polyhedron.

We do this by separating the ’shape type’ and the size of the object. This ’shape
type’ then describes the shape in an abstract manner, it can be a polyhedron,
but it can also be a cylinder, a sphere, or any other shape, such as Box, Wedge
and Corner to optimize common cases. Instead of a plain Polyhedron, a Shape
now has a pointer to an existing ShapeClass, and a scale factor1 (sx, sy, sz).
A ShapeClass is defined to have bounds -1..1 in all axes, these bounds are
then rescaled to the size of the object by the scale factor. This way a single
polyhedron can be the basis for many objects.

1Not all shapes can be scaled freely. Spheres and cylinders require that the certain pro-
portions are kept so that all circles remain circles. This is enforced by making the ShapeClass
responsible for applying scaling factors to a Shape

2

1.2.1 Scaling

Scaling a shape along the major axes with sx, sy, sz Volume and Center of Mass
are trivial to scale:

V ′ = sxsyszV (4)

~M ′ =

sxMx

syMy

szMz

 (5)

But the inertial matrix is another story. We will assume a shorthand notation
to build the full integral

Ixy =

˚
V

xy dxdydz

Ixz =

˚
V

xz dxdydz

Iyz =

˚
V

yz dxdydz

Ix2 =

˚
V

x2 dxdydz

Iy2 =

˚
V

y2 dxdydz

Iz2 =

˚
V

z2 dxdydz

(6)

Which makes the original inertia matrix

Î =

−Iy2 − Iz2 Ixy Ixz
Ixy −Ix2 − Iz2 Iyz
Ixz Iyz −Ix2 − Iy2

 (7)

For each of these terms we can compute a scaled version:

I ′xy =

˚
V

sxxsyy sxdxsydyszdz = s2xs
2
yszIxy

I ′x2 =

˚
V

(sxx)2 sxdxsydyszdz = s3xsyszIx2

(8)

likewise for Ixz, Iyz, Iy2 , Iz2 .
This makes the resulting scaled inertial matrix:

Î ′ = sxsysz

−s2yIy2 − s2zIz2 sxsyIxy sxszIxz
sxsyIxy −s2xIx2 − s2zIz2 syszIyz
sxszIxz syszIyz −s2xIx2 − s2yIy2

 (9)

3

Figure 2: Local bounds of rotated shape classes

1.2.2 Global Bounds Computation

To compute the global bounds of an object, we need some general way of com-
puting bounds of ShapeClasses. Translating a shape and it’s bounds is easy, just
apply the same translation. Rotation and scaling however, do affect the funda-
mental shape of the bounds, and so must be handled by ShapeClass. This is done
by BoundingBox getBounds(Rotation rotation, DiagonalMat3 scale).

• Sphere: The bounds for a sphere are quite simple, just −r..r in all direc-
tions. (with r = sx = sy = sz due to the scaling restriction of sphere)

• Cylinder: We will define a cylinder along the z-axis. So r = sx = sy.
TODO bounds

• Box: By We can take the base vectors of the given rotation, and write out
the matrix products to project each of the corners of the box:

R̂
(±sx
±sy
±sz

)
= ±sx ~R0 ± sy ~R1 ± sz ~R2 (10)

With ~R0, ~R1, ~R2 the columns of rotation matrix R̂. The 8 possible choices
for the ± describe the 8 corners of the box. sx, sy, sz represent the scales
in each direction of the box

4

1.3 Polyhedra

We need to compute these properties for polyhedra as well. Since polyhedra
in Physics3D are defined by their surface, we will convert the volume intervals
to surface intervals using Gauss’ Theorem2. Using ~n = (~v1 − ~v0) × (~v2 − ~v0),(ax

ay
az

)
◦
(

bx
by
bz

)
=

(
axbx
ayby
azbz

)
, and ~v2 = ~v ◦ ~v

Volume:

V =

˚
V

1 dV =

‹
S

(
0
0
z

)
· ~n dS (11)

=

Triangles∑
t={ ~v0, ~v1, ~v2}

nzv0zv1zv2z
6

(12)

Center Of Mass:

~M =

˚
V

(
x
y
z

)
dV

V
=

‹
S

(
x2/2

y2/2

z2/2

)
· ~n dS

V
(13)

=

Triangles∑
t={ ~v0, ~v1, ~v2}

~v0
2 + ~v1

2 + ~v2
2 + ~v0 ◦ ~v1 + ~v1 ◦ ~v2 + ~v2 ◦ ~v0) ◦ ~n

24V
(14)

Moment of inertia:

Ixy =

˚
V

xy dV =

‹
S

(
0
0

xyz

)
· ~n dS (15)

Ix2 =

˚
V

−y2 − z2 dV =

‹
S

(
0

−y3/3

−z3/3

)
· ~n dS (16)

likewise for Ixz, Iyz, Iy2 , Iz2 . The concrete triangles solution is quite long, an
implementation can be found in the source code3.

2https://en.wikipedia.org/wiki/Divergence_theorem
3polyhedron.cpp

5

https://en.wikipedia.org/wiki/Divergence_theorem

2 Constraints

The equation including other constraints’ effects is:

ˆMEa ∗

(~va0

~wa0

)
+

ca∑
i

ˆPMi~pi

 = ˆMEb ∗

(~vb0
~wb0

)
+

cb∑
i

ˆPMi~pi

 (17)

With ca (cb) the set of constraints that link to the first (second) part of the con-
straint. ˆMEa the motion-to-equation matrix. ˆPMi the parameter-to-motion
matrices for the other constraints linking to the included objects. ~pi the param-
eter vector for each involved constraint.

Final result:

ˆMEa ∗

ca∑
i

ˆPMi~pi − ˆMEb ∗

cb∑
i

ˆPMi~pi = Err (18)

Err = ˆMEb ∗
(

~vb0
~wb0

)
− ˆMEa ∗

(
~va0

~wa0

)
(19)

2.1 Formula
MEa1 ∗ PMa11

−MEb1 ∗ PMb11
· · · MEa1 ∗ PMa1k

−MEb1 ∗ PMb1k
...

. . .
...

MEaj ∗ PMaj1

−MEbj ∗ PMbj1
· · · MEaj ∗ PMajk

−MEbj ∗ PMbjk



−→
P1

...
−→
Pk

 =


MEb1 ∗

−−−→
Mb10

−MEa1 ∗
−−−→
Ma10

...

MEbj ∗
−−−→
Mbj0

−MEaj ∗
−−−→
Maj0


(20)

1. PMajk is the effect of the parameters of constraint k on the motion of
object attached to the a side of constraint j

2. MEaj is the Motion to Equation Matrix. It converts the motion of side
a of the constraint to the values which can be summed to get the full
constraint equation. We might want to assert that the motions are equal,
but this is too strict, for example, for a ballconstraint, only the velocities
need to be equal, not the angular velocities

2.2 Derivation for BallConstraint

s t r u c t Ba l lCons t ra in t {
Vec3 attach1 ; // r a
Vec3 attach2 ; // r b

}

6

For BallConstraint, the equation we wish to satisfy is the following:

~va + ~ra × ~wa = ~vb + ~rb × ~wb (21)

This gives rise to the following matrices, applied to the motion vector
(
~v
~w

)
[(

1 0 0
0 1 0
0 0 1

)
[~ra]×

](~va
~wa

)
=
[(

1 0 0
0 1 0
0 0 1

)
[~rb]×

](~vb
~wb

)
(22)

The forces of a BallConstraint on the motion of it’s connected objects must
also be incorporated:

∆~v = m−1~p (23)

∆~w = [Î−1](~r × ~p) (24)

Convert to a matrix:

∆

(
~v

~w

)
=

[
m−1

(
1 0 0
0 1 0
0 0 1

)
Î−1[~r]×

]
~p (25)

Resulting Matrices:

ˆPMa =

[
m−1a

(
1 0 0
0 1 0
0 0 1

)
Î−1a [~ra]×

]
(26)

ˆPMb =

[
m−1b

(
1 0 0
0 1 0
0 0 1

)
Î−1b [~rb]×

]
(27)

ˆMEa =
[(

1 0 0
0 1 0
0 0 1

)
[~ra]×

]
(28)

ˆMEb =
[(

1 0 0
0 1 0
0 0 1

)
[~rb]×

]
(29)

2.3 Derivation for HingeConstraint

s t r u c t HingeConstra int {
Vec3 attach1 ; // r a
Vec3 ax i s1 ;
Vec3 attach2 ; // r b
Vec3 ax i s2 ;

}

We will assume that the constraint is satisfied in position, so both axes are
parallel
Let ~z be the global axis of rotation for the hinge, with ~x and ~y such that
~x⊥~y⊥~z⊥~x

The equations that must be satisfied are:

~va + ~ra × ~wa = ~vb + ~rb × ~wb (30)

7

(~wa − ~wb) · ~x = 0 (31)

(~wa − ~wb) · ~y = 0 (32)

Possible Forces:
Hinges can exert forces/impulses in any direction other than rotating around
the axis of rotation

∆~v = m−1 ~pt (33)

∆~w = [Î−1](~r × ~pt + px ∗ ~x + py ∗ ~y) (34)

Resulting matrices:

ˆPMa =

[
m−1a

(
1 0 0
0 1 0
0 0 1

) (
0
0
0

) (
0
0
0

)
Î−1a [~ra]× Î−1~x Î−1~y

]
(35)

ˆPMb =

[
m−1b

(
1 0 0
0 1 0
0 0 1

) (
0
0
0

) (
0
0
0

)
Î−1b [~rb]× Î−1~x Î−1~y

]
(36)

ˆMEa =


(

1 0 0
0 1 0
0 0 1

)
[~ra]×

(0 0 0) ~xT

(0 0 0) ~yT

 (37)

ˆMEb =


(

1 0 0
0 1 0
0 0 1

)
[~rb]×

(0 0 0) ~xT

(0 0 0) ~yT

 (38)

2.4 Derivation for BarConstraint

s t r u c t barConstra int {
Vec3 attach1 ; // r a
Vec3 attach2 ; // r b
double l ength ;

}

Let d be the vector between the points
The equation that must be satisfied is:

(~va + ~ra × ~wa) · ~d = (~vb + ~rb × ~wb) · ~d (39)

Possible Forces:
A bar can only excert forces/impulses along the length of the bar:

∆~v = m−1 ∗ ~d ∗ p (40)

∆~w = [Î−1](~r × ~d) ∗ p (41)

8

Resulting matrices:

ˆPMa =

[
m−1a

~d

Î−1a (~ra × ~d)

]
(42)

ˆPMb =

[
m−1b

~d

Î−1b (~rb × ~d)

]
(43)

ˆMEa =
[
~d ~ra × ~d

]
(44)

ˆMEb =
[
~d ~rb × ~d

]
(45)

9

	Shapes
	Fundamental formulae
	Shape Classes
	Scaling
	Global Bounds Computation

	Polyhedra

	Constraints
	Formula
	Derivation for BallConstraint
	Derivation for HingeConstraint
	Derivation for BarConstraint

